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[1] A geomagnetic storm model needs to take into account the coupling between
magnetic field and plasma, as the storm-time field in the inner nightside magnetosphere
can be very depressed compared to that of the Earth dipole, thus significantly modifying
plasma transport. In this paper we extend our previous ‘‘one-way’’ coupling between a
kinetic ring current model and a magnetospheric force-balance model to a fully
magnetically self-consistent approach, in which the force-balanced fields are fed back
into the kinetic model to guide its evolution. The approach is applied to simulating the
21–23 April 2001 ‘‘GEM Storm Challenge’’ event. We use boundary and initial
conditions for the kinetic model from several spacecraft, and magnetic flux boundaries for
the equilibrium code from an empirical magnetic field model. We find significant
differences in the self-consistent results compared to those obtained from the kinetic
model with a dipolar background field (with the same particle boundary conditions and
electric fields), due mainly to changes in the particle drifts. In addition to large depressions
in the nightside magnetic field values compared to a dipolar field, we also find
significantly lower particle density and perpendicular plasma pressure in the inner
magnetosphere in the self-consistent case, as well as local, narrow pressure peaks and
strongly enhanced plasma �p in localized regions on the nightside.
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1. Introduction

[2] Models of the inner magnetosphere, crucial in the
study of geomagnetic storms, need to take into account the
physical coupling between plasma and fields. In particular,
the coupling between plasma and magnetic field is very
important: a realistic magnetic field is needed, for example,
for the correct modeling of particle drifts, as drift-shell
splitting [Roederer, 1967] appearing in nondipolar fields
leads to changes in the particle drifts and pitch angle
distribution. Many physical models of the inner magneto-
sphere have so far mainly used the dipole approximation for
the magnetic field; however, both observations and compu-
tational studies report large depressions in the field during
the main phase of storms [e.g., Cahill, 1973; Tsyganenko et
al., 2003; Zaharia et al., 2005]. Such studies show that the
fields induced by magnetospheric current systems become
important even close to Earth during storms; therefore using

the dipolar approximation even at L � 3–4 to model such
events can be problematic [Tsyganenko et al., 2003]. It is
thus clear that more realistic magnetic fields need to be used
for storm modeling, and the plasma and the magnetic field
should represent a self-consistent configuration obeying the
plasma momentum equation.
[3] The self-consistent coupling between magnetic fields

and plasmas in the inner magnetosphere has so far not been
well modeled and understood. There have been however
several efforts toward that eventual goal, some of which will
be very briefly discussed below.
[4] Quite popular in the magnetospheric community is

the use of empirical models [e.g., Tsyganenko, 1989;
Tsyganenko and Stern, 1996; Tsyganenko and Sitnov,
2005] that specify the magnetic field only. Their drawback
is that they do not incorporate any plasma information: the
fields of the empirical models are not built to be in force
balance with plasma pressure [Zaharia and Cheng, 2003b];
i.e., they are not self-consistent. Some ad hoc methods have
been developed for improving an empirical specification
(but not necessarily making the field fully consistent with
the pressure), including either choosing the best existing
model for a particular situation [Chen et al., 2005], or
modifying the parameters of an empirical one to suit a
particular event [Ganushkina et al., 2002]. An alternative to
using an empirical field is employing global magnetohydro-
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dynamics (MHD) models [e.g., Raeder et al., 1995]. While
time dependent, the MHD fields are not consistent with
particle populations computed by more realistic kinetic
models: for one, plasma is anisotropic in the inner magne-
tosphere while the MHD models assume isotropy; probably
even more importantly, the single-fluid MHD treatment does
not include the gradient and curvature drifts (the dominant
motion of the pressure-bearing inner magnetosphere par-
ticles) and thus cannot provide an adequate description of
the inner magnetosphere [e.g., De Zeeuw et al., 2004].
[5] A physically more realistic model in the inner mag-

netosphere is RCM [Harel et al., 1981] an isotropic con-
vection model that, unlike MHD, includes all relevant
particle drift physics, and which has been using nondipolar
fields for a while [Fok and Moore, 1997; Sazykin et al.,
2002]. RCM has been coupled with a magnetofriction code
[Hesse and Birn, 1993; Toffoletto et al., 1996, 2001; Lemon
et al., 2004], and in that approach the plasma (considered
isotropic) and the field are self-consistent. On a parallel
track, RCM has also been coupled with global MHD
models [Toffoletto et al., 2004; De Zeeuw et al., 2004].
While the coupled models are vast improvements over
MHD alone in the inner magnetosphere, they still rely on
MHD to advance the fields, and they also treat plasma
isotropically. Plasma is however anisotropic in the inner
magnetosphere, and the anisotropy leads to the growth of
waves such as electromagnetic ion cyclotron (EMIC) waves
that are crucial in various acceleration and loss processes
that affect the particles. Finally, we briefly note that another
line of research in the community is seeking to model the
interaction between plasma and electric, rather than mag-
netic, fields self-consistently [e.g., Ridley and Liemohn,
2002; Khazanov et al., 2003; Ebihara et al., 2004; Liemohn
et al., 2005].
[6] The modeling approach presented in this paper is a

fully anisotropic magnetically self-consistent formulation
that completely relegates the task of describing plasma
transport to the kinetic RAM code [Jordanova et al.,
1997]. We use the plasma pressure distributions from
RAM to calculate the global three-dimensional (3-D) mag-
netic field in force balance with them, and finally we feed
that field back into the RAM code to drive its evolution.
The approach is thus a full (‘‘two-way’’) coupling between
RAM and the 3-D equilibrium code. An initial ‘‘one-way
coupling’’ was developed by Zaharia et al. [2005] and
applied to a magnetic storm simulation. In that study, the
RAM code was used to follow the particles in the Earth
dipole field, and then the magnetic field in force balance
with the particle pressure was obtained; however, the field
was not fed back into RAM. The one-way coupling never-
theless showed that the magnetic field values that equili-
brate realistic pressures during the main phase of a storm are
very depressed compared to the Earth dipole field, and that
plasma pressure has a very strong effect on the field due to
the high plasma �p. In view of those results, Zaharia et al.
[2005] pointed out that a magnetically self-consistent ap-
proach (i.e., a two-way coupling) was a clearly needed
feature in geomagnetic storm modeling.
[7] The present work is such a two-way coupling, where-

by particle motion affects the magnetic field and the field
affects the particles in return. One assumption of our
approach is that ‘‘quasi-static’’ magnetospheric equilibria

exist at all times [Wolf, 1983], except for periods of
explosive activity (i.e., substorm expansion phases). Such
equilibria characterize not only quiet times, but also driven
events such as storms, if one is only interested in the regions
on closed field lines away from the magnetopause, and in
the absence of dipolarizations or compressions of the whole
magnetosphere by sudden solar wind impulses (dynamic
pressure changes). In the inner magnetosphere plasma flows
are slow compared to the fast mode speed [Wolf, 1983] at
most times, and the quasi-static approximation is valid
there. In particular, for the event simulated in this study,
geosynchronous LANL observations show no magneto-
pause crossings and no significant dipolarizations. Further-
more, even though substorms can and do occur during the
main phase of some storms, their overall effects are found to
be relatively small [Chen et al., 1994] over the cycle of
substorm field stretching and dipolarization.
[8] With the slow-flow assumption, we use our 3-D

equilibrium code, extended to anisotropic pressure [Zaharia
et al., 2004], to compute force-balanced magnetic fields and
plasmas, with magnetic flux boundaries from empirical
models and anisotropic plasma pressures in the equatorial
plane from RAM. The RAM code [Jordanova et al., 1997]
has been used thus far to compute the bounce-averaged
motion in a dipolar field, with various loss mechanisms
taken into account: charge exchange, Coulomb scattering,
and wave-particle interactions. Recent developments
[Jordanova and Miyoshi, 2005] have added radial diffusion
and relativistically treated electrons. To be used in this
study, the RAM formalism has been updated to include
arbitrary magnetic fields. The RAM model uses boundary
conditions at geosynchronous orbit based on observations.
A description of the RAM formalism with arbitrary mag-
netic fields, as well as extensive comparisons of RAM
results with observations, can be found in a companion
paper [Jordanova et al., 2006].
[9] Our equilibrium approach is unique in its ability to

compute 3-D magnetic fields in force balance with pre-
scribed anisotropic pressures; this feature is important for
storm studies, as the inner magnetospheric plasma is often
anisotropic, typically with P? > Pk. Furthermore, unlike
other model coupling studies, our technique does not
change the pressures in the course of computing the field,
instead relegating the plasma transport description to the
kinetic RAM model.

2. Models

2.1. Equilibrium Model With Anisotropic Pressure

[10] We use a computational approach in flux coordinates
(Euler potentials) which is a direct extension [Zaharia,
2003; Zaharia et al., 2004] of the isotropic pressure case
[Cheng, 1995; Zaharia and Cheng, 2003a]. The code solves
the 3-D force-balance equation:

J� B ¼ #� P ð1Þ

where P is the general pressure tensor. With anisotropic
pressure, denoting by P? and Pk the pressures perpendicular
and parallel to the field, respectively, we have

#� P ¼ #

P? 	 #� P? 	 Pk
� �

bb
� �
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and equation (1) becomes

�J� B ¼ #

P? 	 B � #

�ð ÞBþ 1	 �ð Þ #B2

2

� �
ð2Þ

with � = 1 + (P? 	 Pk)/B
2.

[11] One can express the magnetic field vector in terms of
Euler potentials as B =

#

� � #

� (we use this notation
here, which is different from the ( , �) notation elsewhere,
including in the work of Zaharia et al. [2005], for consis-
tency with common nomenclature in the space physics
community). In this representation the magnetic field lines
are given by the intersection of the constant � and
� surfaces. Then, equation (2) can be decomposed into
two ‘‘quasi-2-D’’ inhomogeneous elliptic partial differential
equations for the Euler potentials � and �:

#� #

�ð Þ2 #

� 	 #

� � #

�ð Þ #

�
h i

¼ 	 B� #

�ð Þ
�B2

� #

P? þ 1	 �ð Þ #B2

2

� �	 

ð3Þ

#� #

� � #

�ð Þ #

� 	 #

�ð Þ2 #

�
h i

¼ 	 B� #

�ð Þ
�B2

� #

P? þ 1	 �ð Þ #B2

2

� �	 

: ð4Þ

[12] The equations above (which are expressed in the
rationalized EMU system) are coupled quasi-2-D elliptic
equations for each Euler potential, on surfaces on which the
reciprocal potential is constant. They are solved together
with two Maxwell’s equations:

#� B ¼ �0J ð5Þ

#� B ¼ 0 ð6Þ

[13] The system of equations (3)–(6) is not solvable
analytically in general. We seek a numerical solution, using
a Picard iteration procedure (keeping the nonlinear terms on
the right-hand sides of equations (3) and (4) constant at each
iteration). Our solution is sought in inverse form, i.e., rather
than obtaining the B components explicitly, we seek X, Y,
and Z as functions of �, �, and � (where � is a coordinate
along the field lines).
[14] What is needed for a unique 3-D solution then are the

pressures P? and Pk at one point on each field line (in this
study they are taken in the equatorial plane while magnetic
moment and energy conservation provide their mapping
along the field lines), as well as boundary conditions for the
magnetic flux � (usually obtained from empirical field
models [Zaharia et al., 2004]). The condition for � is
simply periodicity in the azimuthal direction, while the
boundary conditions in the � coordinate are obtained from
our knowledge of the field and its Euler potentials at the
ends of the field line (i.e., on the Earth’s surface). In this
study the field on the Earth’s surface is taken to be dipolar,
but further refinements such as using an IGRF field could be
considered in the future.

[15] We note that realistic pressure is needed as input to
the model, as the high plasma �p (the ratio of plasma to
magnetic pressure, not to be confused with the Euler
potential �) is large near the equatorial plane; thus small
plasma pressure variations can lead to significant changes in
the field configuration. Furthermore, a stable equilibrium
does not exist for all values of the anisotropy P?/Pk, as it
will be destroyed by either a fire hose (for P?/Pk < 1) or a
mirror or ion cyclotron instability (for large-enough P?/Pk > 1
[e.g., Gary et al., 1997]).
[16] Our approach, owing to the inverse representation,

also requires that the magnetic flux surfaces be nested, i.e.,
does not allow regions that include X or O-points; however,
this is not a concern in the inner magnetosphere.
[17] Besides the values of � on the inner and outer

magnetic flux surfaces, the shapes of those surfaces are
needed as well. Both value and shape are obtained by field-
line tracing of empirical magnetic field models [Zaharia et
al., 2004]. Thosemodels are parameterized according to solar
wind activity and other indices, thus reflecting the overall
disturbance level in the magnetosphere. The computed 3-D
magnetic field is, however, different everywhere from the
empirical one, which is taken as an initial guess only. Even on
the inner and outer magnetic flux boundaries (which are kept
fixed), the magnetic field lines will slide to accommodate the
input pressure gradients.

2.2. Kinetic RAM Model

[18] The kinetic ring current-atmosphere interactions
model (RAM) [Jordanova et al., 1994, 1997, 2001] numer-
ically solves the relativistic evolution equation for the
bounce-averaged particle distribution function [Roederer,
1970] in conservative form:

dQl

dt

� �
¼ @Ql

@t
þ 1

R2
0

@

@R0

R2
0

dR0

dt
Ql

� �� �
þ @

@	

d	

dt

� �
Ql

� �

þ 1ffiffiffiffi
E

p @

@E

ffiffiffiffi
E

p dE

dt

� �
Ql

� �
þ 1

h �ð Þ�
@

@�

h �ð Þ� d�

dt

� �
Ql

� �
¼ dQl

dt

� �
losses

ð7Þ

with Ql(R0, 	, �, t) the distribution function for species l,
dV = 8


ffiffiffiffiffiffiffiffi
2m3

t

p
R0
2

ffiffiffiffi
E

p
�h(�)dR0d	dEd� the differential

phase space volume, R0 the equatorial plane radial distance,
	 the azimuthal angle, E the particle kinetic energy, � =
cos(�0) (�0 is the equatorial pitch angle, not to be confused
with the Euler potential �) and

h �ð Þ ¼ 1

2R0

Z s0m

sm

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 B sð Þ=Bm

p ð8Þ

which is proportional to the bounce period, being the so-
called ‘‘half-bounce path length’’ [e.g., Roederer, 1970],
normalized by 1/2R0. The brackets h i denote bounce-
averaging. The RAM formalism is useful for tracking
particles in regions where the first two invariants are
conserved (i.e., changes in Ql are negligible on the
timescales of the gyro and bounce periods), which is the
case at radial distances closer than 10 RE from Earth.
[19] Equation (7) is solved in a circular domain in the

equatorial plane defined by 2 RE � R0 � 6.5 RE and
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covering all local times. The kinetic energies of the particles
considered are from 100 eV to 800 keV. The initial conditions
are from POLAR, CLUSTER and AP8 [Jordanova and
Miyoshi, 2005], while the boundary conditions are based
on LANL/MPA [McComas et al., 1993] and SOPA measure-
ments [Belian et al., 1992].
[20] Owing to the bounce-averaging, the evolution equa-

tion (7) is in four coordinates only: R0, 	, E, and �. The
RAM model includes various loss processes: charge ex-
change, Coulomb collisions, wave-particle interactions, as
well as losses to the atmosphere. While recent developments
[Jordanova and Miyoshi, 2005] also treat relativistic elec-
trons and include a radial diffusion term on the right-hand
side of equation (7), those features were not included in this
study. As mentioned, the RAM code has so far used a
dipolar magnetic field. For more details about RAM,
including changes needed for this study to accommodate
nondipole B-fields, we refer the reader to our companion
paper [Jordanova et al., 2006].

2.3. Computational Coupling Details

[21] In order to couple RAM with the equilibrium model,
we use an iterative approach, whereby at each iteration
RAM and the 3-D equilibrium code are run for the whole
simulation time span. We compute the force-balanced field
at each hour with pressures from RAM, after which we feed
the field back into RAM. This process is repeated until
approaching convergence. We use a large number of grid
points in the equilibrium code, typically N� � N� � N� =
101 � 71 � 141, in order to resolve the high-�p equilibria
and accurately compute the integrals along the field lines
described below. The resolution is sometimes further in-
creased to allow the code to converge with the sharp
pressure gradients that appear during the storm main phase.
Typically, less than 7 iterations (i.e. 3-D code iterations for
computing equilibria, not to be confused with iterations of
the coupling process) are needed for convergence. When
needed, a ‘‘blending’’ technique [Zaharia et al., 2004] is
also used, through which a fraction of the solution of a
previous 3-D code iteration is blended into the latest
iterative 3-D solution; this improves numerical stability
but increases the number of 3-D code iterations (we
typically need in such cases 20 iterations with a blending
parameter of 0.3 to achieve a reasonably good equilibrium).
2.3.1. Field-Line Integrals
[22] One side of the coupling, whereby the 3-D model

uses pressure input from RAM, was discussed before
[Zaharia et al., 2005]. We address here the second aspect,
i.e., how RAM uses the magnetic field from the 3-D model.
One simplifying factor is that the RAM model does not
need the explicit 3-D field components, as for bounce-
averaged quantities the magnetic field enters the RAM
formulation through the purely field-geometric integrals
h(�) (defined in equation (8)) and

I �ð Þ ¼ 1

R0

Z s0m

sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 B sð Þ=Bm

p
ds; ð9Þ

where sm and s0m are the southern and northern mirror point
coordinates, respectively, of a bouncing particle. While h(�)
has already been introduced as the normalized half-path

bounce length, I(�) is related to the second adiabatic
invariant J through J = 2pR0I(�) [Ejiri, 1978], where p is the
particle momentum in the equatorial plane. The above
integrals are easily solved in the equilibrium code
coordinate system, as they are just 1-D integrals (over �,
the coordinate that parameterizes the distance along the field
line). Indeed, with an equal arc length � choice (i.e.,
equal D� corresponds to equal Ds), the field line distance is
s = �s0/
; therefore

Z s0m

sm

f sð Þds ¼ s0




Z �0
m

�m

f �ð Þd�;

where �m, the location of the mirror point, is determined
from B(�) by 1-D cubic spline interpolation.
[23] We use the QUADPACK adaptive integration rou-

tines DQAG and DQAGI [Piessens et al., 1983] to calculate
the integrals for each (�, �) pair in the 3-D code. Finally, we
need to project the computed quantities onto the RAM
cylindrical coordinate system, i.e., from h(�, �; �) and
I(�, �; �) to h(R0, 	; �) and I(R0, 	; �). We do this by a
‘‘gridding’’ technique that consists in a Delaunay triangu-
lation (using the Qhull package [Barber et al., 1996]),
followed by linear interpolation inside the triangle contain-
ing the point of interest {R0, 	}. We use nearest-neighbor
interpolation to obtain quantities in the limited ‘‘buffer’’
regions (mostly on dayside) outside the 3-D code compu-
tational domain, but inside 6.5 RE (due to the dayside flux
surface compression).
[24] The field-line integrals are computed at each hour,

and linear interpolation is used in RAM to obtain values in
between. The two steps (integration and 2-D interpolation)
are relatively fast and add little computational overhead to
the equilibrium calculation, highlighting one advantage of
an Euler potential coordinate approach for computational
inner magnetosphere modeling.
2.3.2. Field-Line Integrals: Benchmarking
[25] Before employing the technique to modeling a geo-

magnetic storm we verified our calculation of h and I by
comparing the numerical results obtained for a dipole field
with analytical solutions. For a dipole, h and I depend on
pitch angle only, not on the equatorial location of the field
foot point, and very accurate (within 0.1%) approximate
analytical values exist [Ejiri, 1978]. The results obtained for
a dipole using our numerical method were found to be very
close (most within 0.2%) to the values of [Ejiri, 1978] for
all locations and pitch angles.

3. 3-D Code Inputs

3.1. Anisotropic Pressure

[26] The pressure input in the 3-D model consists of
perpendicular/parallel pressures in the equatorial plane,
obtained from moments of the RAM distribution function:

P? ¼
Z

1

2
mv2F sin2 �0dp

Pk ¼
Z

mv2F cos2 �0dp
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[27] The pressure maps from RAM are generally too
rough for being used directly in the 3-D code, as very
smooth functions are needed in the 3-D model to ensure
convergence. To this end, we use spline interpolation to
transform the pressure map in the equatorial plane into a
smoother function. We stress here that the RAM pressure
profiles are kept spatially fixed in the equatorial plane, and
therefore the functionals P?(�, �) and Pk(�, �) do change at
each equilibrium code iteration in the flux coordinate space
until equilibrium is achieved.
[28] The pressures given by the RAM model are from

three ion species (H+, He+, and O+). We neglect the
electron pressure contribution as it is (in the RAM output)
small (�2%) during quiet times and only reaches maximum
values of �10% near Dst minima [Jordanova and Miyoshi,
2005]. While an isotropic pressure can simply be mapped
along B-field lines as it is constant along the field line in
equilibrium, this is not so for the anisotropic case. How-
ever, we use the fact that the distribution changes slowly
enough so that we can employ energy and magnetic
moment conservation (basically apply Liouville’s theorem)
to obtain the anisotropic pressure values along the magnetic
field lines. While in our previous work we neglected the
existence of the loss cone in this collisionless mapping,
here we improve the treatment by considering the empty
loss cone formulation described by equation (8) of Liemohn
[2003]:

Pk ¼ P*kr
1þ A*

1þ A*RB

RBI 	 1

RBI 	 RB

	 
1=2
1	 1þ A*RB

RBI þ A*RB

� �

P? ¼
Pk

1þ A*RB

where r denotes the reference point (here the equatorial
plane), RB is the ratio between the magnitudes of the
equatorial B-field and the field at the location of interest,
RBI the ratio between the ionospheric field and that at the
location of interest, while A = P*kr/P*?r 	 1, with P*kr and P*?r

related to the actual values at the reference point r through
equation (9) of Liemohn [2003]. While this collisionless
mapping does assume bi-Maxwellian distributions at the

reference point, the pressure results from the mapping
have been shown to be very close to results from a kinetic
model [Liemohn, 2003], rendering the method appropriate
for our purpose, i.e., computing the force-balanced fields.
In fact, the previous filled loss cone formalism is also fine
for this purpose; while the empty loss cone assumption is
more physically realistic (the pressure drops to zero at the
ends of the field line, i.e., on the Earth’s surface in the
equilibrium model), the results obtained by employing it in
the code are almost identical to those from the filled loss
cone approach. This is because differences between the
empty and the filled loss cone formalisms occur only close
to the end of field lines [Liemohn, 2003], so the pressures
in most of the domain (including all regions with high �p)
are about the same with the two mapping choices. We note
that the final result of the code, a 3-D force-balanced
configuration, also provides as a by-product a realistic
mapping of the pressure profile in the whole computa-
tional domain.

3.2. Computational Domain

[29] The 3-D equilibrium model requires, besides pres-
sure input, inner and outer magnetic flux (�) surfaces
defining its computational domain, as well as the value of
� on those surfaces. For this initial study we constructed
those boundaries by field-line tracing using the T89 empir-
ical field model [Tsyganenko, 1989], which is parameterized
by the Kp index, known at each time during the storm. In
Figure 1 we show the most ‘‘disturbed’’ computational
domain, built with Kp = 6. The reason for using T89 was
its speed and also its discrete Kp parameterization; since the
T89 code provides only six discrete domains, we used linear
interpolation to obtain the shape of the domain at any given
time during the storm rather than explicitly tracing model
field lines at each time. Future refinements of this study will
include the use of the latest empirical magnetic field model
of Tsyganenko and Sitnov [2005], which is parameterized
by Dst and solar wind parameters, and which will explicitly
provide a different computational domain at each time when
an equilibrium configuration is to be computed. While
realistic model boundaries are obviously important, we note
however that in configurations with high plasma �p the

Figure 1. One computational domain for performing the three-dimensional equilibrium calculations,
obtained by tracing magnetic field lines from the T89 model with Kp = 6.
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equilibrium solution not too close to the boundary does not
depend too much on the boundary.

4. Self-Consistent Results

4.1. Field-Line Integrals in the Nondipolar Case

[30] Even before analyzing the actual results, we can
anticipate that plasma transport will be quite different in
the lower B-fields of the self-consistent case compared to
using a dipolar field. Indeed, we find that the h and I
integrals (equations (8) and (9)) for the stretched field
configurations found in the storm main phase are typically
much lower on the nightside than the ones for a dipolar
field, down by about 80% for the largest pitch angles
(particles mirroring close to the equatorial plane). The large
difference in a realistic versus dipolar field configuration
means that the particle drifts will be strongly affected in the
self-consistent framework.

4.2. Application to the 22 April 2001 Storm

[31] We apply our technique to the geomagnetic storm of
21–23 April 2001, a ‘‘challenge’’ event chosen for study by
the NSF Geospace Environment Modeling (GEM) Program.
This moderate storm (Dst minimum of 	102 nT) was
driven by a magnetic cloud with a southward field. The
interplanetary shock was observed at �1600 UT on 21 April
and the storm main phase lasted more than 12 hours. The
relevant solar wind parameters and the Dst and Kp indices
are plotted in Figure 2.

[32] The computation presented here covers 24 hours of
the storm, starting at 0000 UT on 22 April 2001 (at the
beginning of the main phase, 8 hours after the interplanetary
shock arrival) until 0000 UT on 23 April (early recovery
phase). We present results at five representative hours
during this interval. The Weimer 01 electric convection
model [Weimer, 2001], an empirical model based on low-
Earth-orbit satellite measurements, is used in RAM, as it
usually gives more realistic values of the simulated Dst
index [Jordanova et al., 2006] than other convection
models. The model depends on interplanetary conditions
and predicts the strongest electric fields during the main
phase of the storm. The RAM code was updated to take into
account the particle drifts in the general magnetic field, but
the loss terms in equation (7) were not changed for this
study.
4.2.1. Plasma Pressure and Anisotropy
[33] In Figure 3 we show at the top the measured Dst

index versus time. The Dst has a steady descent, reaching a
minimum at around T = 39 hours. The middle and bottom
plots show the perpendicular plasma pressure (P?) in the
equatorial plane at the five selected hours, for a run of the
kinetic model with dipole magnetic field and for the self-
consistent run, respectively (by the self-consistent run we
mean the third iteration of the coupling procedure, as
explained below). Both plots show the pressure increasing
significantly during the storm main phase, with maxima
reached in the dusk sector, consistent with the ion drifts. It is

Figure 2. Solar wind parameters and Dst and Kp indices during the 22 April 2001 storm. The 24-hour
interval simulated in this study is delimited by vertical dashed lines.
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clear from the azimuthal asymmetry that increased convec-
tion plays a very important role in the ring current buildup.
What is striking however is that in the self-consistent
computation the maximum P? reached is only half the value
corresponding to the case when a dipole magnetic back-
ground is used, 30 nPa versus 60 nPa, respectively. As will
be demonstrated in the Discussion section, this is mostly
due to faster drifts leading to lower particle densities in the
self-consistent case compared to runs with a dipole field.
[34] There are also other features that differentiate the

self-consistent case from the dipole run, as seen in Figure 3.

Specifically, in the self-consistent case there are locally
larger pressure values farther away from Earth, accompa-
nied by local gradients and double peaks in the equatorial
profile. Similar features, i.e., a decrease in P? (versus runs
with a dipole field) through most of the domain,
accompanied by local increases farther from Earth, are also
reported in the modeling study of Chen et al. [2006], who
employ a simpler 2-D self-consistent formalism (in the
equatorial plane). A different morphology in the self-
consistent pressure results versus runs with inert fields is
also found when taking into account changes in electric

Figure 3. (top) Dst index during the April 2001 storm (time axis starts at 0000 UT on 21 April);
(middle) pressure in the equatorial plane from RAM model run with dipole background; (bottom)
pressure in the equatorial plane from the self-consistent simulation.

Figure 4. (top) P?/Pk in the equatorial plane from RAM model run with dipole background (IT = 1);
(bottom) P?/Pk in the equatorial plane from the self-consistent simulation (IT = 3).
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rather than magnetic fields: considering the feedback of
particles on the electric field leads to a picture with more
discrete structure than from runs with unchanged fields
[Liemohn et al., 2004].
[35] Figure 4 shows the pressure anisotropy P?/Pk. It also

exhibits significant differences between the dipole-back-
ground and the self-consistent case. Specifically, the
anisotropy developed in the self-consistent case is lower
than in the dipolar run. This feature is due to P? being
increased significantly less than in the dipolar run, while Pk
is increased almost as much as in the dipole field case. The
physical cause for this is described in the Discussion section
as well.
[36] The pressure anisotropy is significantly lower in the

storm main phase compared to the early recovery phase, a
feature also seen in observations [e.g., Sorbo et al., 2005].
The lower anisotropy is also expected in the main phase
from a plasma stability viewpoint: at that time the field is
more stretched, plasma �p is higher and therefore the
instability thresholds are lower [e.g., Gary et al., 1997].
The degree of anisotropy and its spatial structure are crucial
quantities obtained as products of the self-consistent code
coupling; their knowledge is important in studies of high-
energy particles, as the anisotropy controls the growth of
waves such as the electromagnetic ion cyclotron (EMIC)
waves, which can strongly affect particles in the inner
magnetosphere.
4.2.2. Convergence; Other Computed Quantities
[37] Convergence of the iterative coupling procedure is

approached quite fast, after only three iterations. In Figure 5
we plot in the equatorial plane the relative difference
between P? at iterations 2 versus 1 and 3 versus 2,
respectively. The figure shows that there is a large pressure
change (mostly a decrease) from the first iteration (RAM

run with dipole field) to the second (first force-balanced
field fed back into the RAM code), but only small changes
from the second iteration to the third, thus allowing us to
approximate the IT = 3 case to an ideally converged self-
consistent computation.
[38] The next figure, Figure 6, shows in the top row the

equatorial plane profiles of the difference between the self-
consistent field and the Earth dipole field BSC 	 Bdip; the
bottom row shows the difference BSC 	 B1 between the self-
consistent field and that obtained after the first iteration (i.e.,
force-balanced with plasma pressures from RAM with
dipole field, similar to what we calculated before [Zaharia
et al., 2005]). One notices that the self-consistent magnetic
field is significantly depressed from dipolar in the main
phase of the storm. The largest depressions are at T =
39 hours, of less than 	120 nT near midnight. The self-
consistent field is also different from the field at IT = 1, but
the differences are much lower in absolute magnitude than
between it and the dipole field. The field at IT = 1 is in most
places lower than BSC by less than 20 nT, indicating that the
first iteration ‘‘overshoots’’ the actual field stretching (as it
does for the pressure, see Figure 5), but not by much. The
self-consistent field is however significantly lower in very
localized regions near the outer boundary, where it is more
stretched in order to balance the plasma pressure peaks
appearing there in the self-consistent case.
[39] Figure 7 shows in the equatorial plane the perpen-

dicular plasma �p? in the self-consistent case, as well as the
difference between it and �p? obtained at IT = 1. The self-
consistent �p? has very large values during the storm main
phase, reaching almost 50 in very localized regions in the
equatorial plane at T = 42 hours. Notwithstanding those
very localized peaks, �p? approaches values of 1 or larger
for all distances R > 4.5 RE on the night side during the

Figure 5. (top) Relative difference in the equatorial plane between pressures at the the second and the
first iteration (P?2 	 P?1)/P?1. The color plots are mostly saturated (indicating changes >25%); (bottom)
relative difference in the equatorial plane between pressures at the third and the second iteration
(P?3 	 P?2)/P?2.
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storm main phase. This clearly shows why the magnetic
field is so much changed from dipolar, as when plasma �p is
1 or larger, the pressure becomes crucial in dictating the
field configuration. The differences between the self-
consistent values and those at IT = 1 again reflect the fact
that the first iteration overshoots the amount of field
stretching (leading to larger �p?1), except near the
boundary, where the self-consistent �p? is larger due to
the localized pressure peaks.
[40] The next figure, Figure 8, shows the azimuthal

current density J	 in the equatorial and the noon-midnight
meridian planes, for both IT = 1 and the self-consistent case.
As expected, the largest current densities (jJ	j > 10 nA/m2)

appear in the storm main phase (and to some extent in the
early recovery phase) whenever the pressure is large. The
maximum current density at those times is about an order of
magnitude larger than before the storm. The large,
asymmetric part of the current in the storm main phase is
commonly referred to as the ‘‘partial ring current’’ [e.g.,
Liemohn et al., 2001]. An interesting feature are the
localized regions with large current density in the dawn
sector in the self-consistent picture (seen at hours 39 and 42,
these currents appear due to the localized peaks in plasma
pressure at those times, as seen in Figure 3). The westward
current at IT = 3 is slightly larger and more toward dusk
than at IT = 1 at T = 39 hours and T = 42 hours, showing

Figure 7. (top) Perpendicular plasma �p in the equatorial plane in the self-consistent case (IT = 3);
(bottom) difference between the self-consistent plasma �p and that obtained at IT = 1.

Figure 6. (top) Difference between the self-consistent magnetic field and the Earth dipole field,
BSC 	 Bdip, in the equatorial plane; (bottom) difference between the self-consistent field (i.e., obtained at
IT = 3) and the force-balanced field at IT = 1.

A11S14 ZAHARIA ET AL.: SELF-CONSISTENT RING CURRENT MODEL

9 of 14

A11S14



F
ig
u
re

8
.

T
o
p
tw
o
ro
w
s
sh
o
w

az
im

u
th
al

cu
rr
en
t
d
en
si
ty

J 	
(n
A
/m

2
)
in

th
e
eq
u
at
o
ri
al

an
d
n
o
o
n
-m

id
n
ig
h
t
m
er
id
ia
n
p
la
n
es
,

af
te
r
th
e
fi
rs
t
it
er
at
io
n
.
P
o
si
ti
v
e
(n
eg
at
iv
e)

si
g
n
s
sh
o
w

cu
rr
en
ts
th
at

ar
e
ea
st
w
ar
d
(w

es
tw
ar
d
)
in

th
e
n
ig
h
t
si
d
e.
B
o
tt
o
m

tw
o

ro
w
s
sh
o
w

th
e
sa
m
e
q
u
an
ti
ti
es
,
b
u
t
af
te
r
th
e
th
ir
d
it
er
at
io
n
(s
el
f-
co
n
si
st
en
t
ca
se
).

A11S14 ZAHARIA ET AL.: SELF-CONSISTENT RING CURRENT MODEL

10 of 14

A11S14



that while the pressures are lower in the self-consistent case
compared to IT = 1, the earthward pressure gradients are
slightly larger.
[41] In the noon-midnight meridian plots (for the IT = 1

case), we again notice that at the peak of storm activity,
instead of being concentrated in the equatorial plane, the
westward current far enough from Earth has a butterfly
shape (see westward current close to the outer boundary in
the T = 42 plot), with maxima above and below the plane, as
also seen in our previous computations [Zaharia et al.,
2005, Figure 5]. Interestingly, this feature is not present
anymore in the self-consistent picture because of the lower
pressure anisotropy (the current bifurcation, as explained by
Zaharia et al. [2005], only occurs in regions with both high
�p and high anisotropy).
[42] Other differences between the IT = 1 and the IT = 3

cases reflect those seen in the magnetic field depression and
�p? plots: the current density J	 is lower closer to Earth in
the self-consistent case, but locally higher in the outer
regions. We also notice the irregular current morphology
farther from Earth: instead of a smooth westward current,
the currents are widely distributed inside the 3-D domain;
still, the westward-oriented currents dominate, and the total
integrated current amounts to a net westward ring current
that is the main cause of the Dst drop. At the peak of the
storm main phase (T = 39) the integrated computed eastward
azimuthal current is 0.42 MA (compared to 0.36 MA before
the storm at T = 24). On the other hand, there is a large
change in the integrated westward current: 1.7 MA at T = 39
vs. 0.31 MA at T = 24. While we likely capture all the
eastward current in our domain, that is certainly not the case
for the westward current. Indeed, additional currents are
likely to flow outside our boundary (both at larger radii and
also at larger Z values), therefore a comparison of total
currents with observations is not straightforward. More
relevant is comparing current densities, and we note that our
obtained westward current densities compare well with
statistical studies; e.g., Le et al. [2004] find typical current
peaks of 11 nA/m2 for storms with	80 nT > Dst >	100 nT
(which is slightly less intense than the present storm).
[43] Finally, we plot in Figure 9 the parallel (field-

aligned) current density on the top of the ionosphere,
obtained by Ampere’s law from the 3-D B-field. These

currents appear through the divergence of the perpendicular
currents. They have an irregular structure and are rather
large locally (>1 �A/m2) during the main phase (these are
significant values, keeping in mind that all the ionospheric
latitudes considered here map to less than 6.6 RE from
Earth). The currents with large Jk flow in very narrow sheets
during the main phase, corresponding to the limited extent
of the local peaks farther from Earth in the equatorial
pressure and J	 distribution; these narrow sheets become
wider in the early recovery phase (T = 48 hours) when the
peaks disappear. The currents are largest near the boundary,
indicating that the boundary may have a significant effect
on their values there. The exact dependence on the
boundaries will be addressed in a future study. While
clearly most of the field-aligned currents flow in regions
beyond our modeling domain, we stress that the present
calculation shows that significant Jk can flow at lower
latitudes; we also point out that the ability of our modeling
technique to compute the self-consistent field-aligned
currents is a very useful feature for the future addition of
convective field self-consistency by coupling the present
approach with an ionospheric model through the field-
aligned currents.

5. Discussion

[44] Our approach is unique in that the computed B-fields
are force-balanced in full 3-D with anisotropic pressures
from a kinetic model; other methods of computing force-
balanced fields either use isotropic pressure as the magneto-
frictional method [Hesse and Birn, 1993; Toffoletto et al.,
1996, 2001; Lemon et al., 2004] or are less than three-
dimensional [Chen et al., 2006].
[45] In this section we explore in more detail the reason

for the main results of this study, i.e., the significant
perpendicular plasma pressure decrease obtained when
self-consistency is taken into account compared to using a
dipolar field in the RAM model. The lower pressure can be
because of lower temperature (i.e., energization efficiency)
or lower particle density. Looking at Figure 10, which
shows the total ion density n at IT = 1 and IT = 3, it is
clear that the latter reason (i.e., lower densities) is the cause
for the lower P?. This is not unexpected; with the same

Figure 9. (top) Field-aligned (Birkeland) current density Jk(�A/m
2) at the top of the ionosphere, after

IT = 1. Positive (negative) signs show currents into (out of) the ionosphere. The computational domain
extends to lower ionospheric latitudes for higher Kps (hours 39, 42). (bottom) The same, but for IT = 3.

A11S14 ZAHARIA ET AL.: SELF-CONSISTENT RING CURRENT MODEL

11 of 14

A11S14



geosynchronous boundary conditions, the particle drifts in
the present case are significantly faster (due to the lower
magnetic field) than in the case with a dipolar background.
Since the same particle flux is injected from the geosyn-
chronous orbit, flux conservation leads to lower densities
and thus lower pressures.
[46] Now that we showed that the P? decrease in due to

lower densities, the remaining question is why Pk does not
experience a similar decrease (Pk is not much changed, as
can be seen from the P? and P?/Pk plots). Obviously there
must be a discrepancy in how the energization of small and
large pitch angles, respectively, is affected in the self-
consistent magnetic field compared to a dipole. Particles
that make up the perpendicular pressure are mostly those
with large pitch angles. They are energized mainly through
betatron acceleration, depending on the ratio of the field
values at the final versus initial position. During the storm
main phase, the field is lower both at geosynchronous and
inside the domain at the final particle location, so it is not
clear how this ratio should be affected. Analyzing P?/n (not
shown here) we find that it is not affected much, i.e., the
efficiency of betatron acceleration is about the same for
particles starting at 6.6 RE, whether they move in a dipole
field or a self-consistent field. On the other hand, particles
which make up the parallel pressure are mostly those with
small pitch angles, and they are accelerated mostly by Fermi
acceleration, as the length of the field lines they bounce
along decreases with approaching Earth. Relevant to those
particles, we find Pk/n to be larger in the self-consistent
(SC) case compared to the dipolar run; this indicates that the
Fermi acceleration mechanism is more effective in the SC
case compared to the dipole case, i.e., there is a larger
change in the field line length along the drift trajectory in
the SC case compared to that in the run with a dipole field.
Two factors contribute to this: both the different field
configuration itself, and the change in the drift trajectories
in the self-consistent framework. We find that in a more
stretched field geometry the share of the Fermi mechanism

in the total energization becomes larger, a result found at
larger distances by [Sergeev et al., 2001].
[47] Thus the significant decrease in P? and P?/Pk at the

same time in the SC case is due to changes in both density
and energization: as drift velocities are increased, the
particle density decreases; on the new drift trajectories and
in the more stretched field, particles with small pitch angles
are energized more than in a dipole field, while those with
large pitch angles do not experience much change in
energization compared to the dipole case.
[48] We want to stress however that the results presented

here are just initial results, obtained by an iterative coupling
at one-hour intervals of the two models. Furthermore, for
this study only the particle drifts (the left-hand side) in
equation (7) have been updated so far in the RAM code for
the nondipole field. The bounce-averaging of losses (the
right-hand side of the equation) has not. The update of the
loss terms could change some result details: for example,
the pressure anisotropy depends on charge-exchange (the
strongest loss mechanism), and a change in this could affect
the parallel versus perpendicular pressures disproportion-
ately (e.g., particles that go closer to Earth experience a
higher neutral density and thus more charge-exchange
collisions). It is likely however that the main result of the
study, the less efficient increase in particle density and
perpendicular pressures, will be maintained in a completely
updated formalism, owing to it being due to significantly
changed particle drifts in the nondipolar field.
[49] We discuss now the appearance of local peaks in the

pressure profile in the SC case, mostly near the outer
boundary. This is also due to the self-consistent magnetic
field strongly changing the particle drifts. In such a case,
unlike in a dipole field, locally closed drift paths can
develop [e.g., Ebihara and Ejiri, 2000], which will maintain
a local pressure peak for a while. The actual local structure
that develops is due to the interplay between changes in the
boundary particle distributions that are injected into the
domain and such strong modifications of the drift trajecto-

Figure 10. (top) Total ion density (H+, He+, and O+) in the equatorial plane from RAM model run with
dipole background (IT = 1); (bottom) ion density in the equatorial plane at IT = 3 (self-consistent).
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ries in the self-consistent field. The pressure peaks that
appear correspond to sharp gradients, and for some hours in
the storm main phase the equilibrium computation had be
performed with a larger number of grid points in order to be
numerically stable.
[50] Our field calculation method, which uses Dirichlet

boundary conditions on fixed boundaries, does have a
limitation, in that it assumes a given total magnetic flux
inside the domain. Therefore, the model used to obtain the
boundaries has to be realistic. In particular, the solution very
close to the boundary will be forced to resemble the
empirical field; however, even on the boundary the field
lines are allowed to slide in the azimuthal direction. More-
over, farther away the solution does not depend too much on
the boundary, because of the large �p (thus the nonlinear
right-hand side terms in equations (3) and (4) are more
important in determining the solution).
[51] As mentioned, another limitation of this initial study

is that we calculated the self-consistent solution exchanging
pressure and field information between the two codes at
every hour only. This time interval is certainly less than
ideal but was dictated by practical considerations of com-
putational time. The current work is therefore just a first
step toward a better solution: the final results may be
modified when full coupling between the two codes is
achieved by updating the solution at a smaller time step.
We are currently working on the parallelization of the
constituent codes, which will allow a 5-min coupling
between them on a routine basis. Results from such a
coupling (which will include using the latest empirical
magnetic field model of Tsyganenko and Sitnov [2005] to
compute a different domain at each 5-min interval) will be
presented in future extensions of this work.
[52] Finally, we note that the results also depend on the

choice of the electric field used in the RAM model. In this
study we use the large-scale Weimer 01 empirical convec-
tion field model [Weimer, 2001]; thus we do not consider
local features such as the narrow regions of intensified
E-fields known as SAPS [Foster and Burke, 2002]. Fur-
thermore, the inductive electric fields due to nonzero @B/@t
are not yet included in the coupled model. Their inclusion,
however, will be greatly facilitated by the Euler potential
representation of the B-field in the equilibrium code and
will be considered in the future, along with a more realistic
convection electric field.

6. Summary and Conclusions

[53] Kinetic models are crucial tools in the study of the
inner magnetosphere and of geomagnetic storms in partic-
ular. The RAM code [Jordanova et al., 2006] reproduces
many features of the inner magnetosphere during storms;
however, it has used a dipole background magnetic field so
far, which is not consistent with the plasma distribution. In
this paper we present an important improvement to RAM:
following the previous 1-way coupling [Zaharia et al.,
2005], we develop an initial iterative 2-way (self-consistent)
coupling between a 3-D plasma equilibrium code and the
RAM model. This is done by updating the bounce-averaged
particle drift formalism to arbitrary B in RAM, computing
the magnetic field in force balance with anisotropic pres-
sures from RAM, and then feeding that field back into the

kinetic model to drive its continued evolution. We apply this
method to the particular case of the 22 April 2001 storm,
employing an iterative procedure until convergence (which
is approached quickly, after only three iterations).
[54] The computed storm-time physical quantities are

found to be significantly different from those obtained by
using a dipolar magnetic field in RAM. In particular, plasma
quantities are significantly modified, with lower particle
density, perpendicular plasma pressure and anisotropy
found inside geosynchronous orbit. The self-consistently
computed magnetic field is found to be depressed from
dipolar, with decreases of more than 120 nT in absolute
magnitude at 5 RE on the nightside. The very changed field
modifies: (1) the particle drift trajectories (with faster drifts
leading to lower particle densities) and (2) the particle
energization (the Fermi mechanism becomes more effective
than in a dipole field, while the betatron acceleration
effectiveness does not change much), which leads to
decreases in P? and P?/Pk.
[55] Another interesting feature of the self-consistent

simulation is the appearance of local, narrow pressure
(and density) peaks in certain locations, unlike the very
smooth picture obtained with a non self-consistent magnetic
field. Also, plasma �p is locally higher on the nightside in
the self-consistent case, with important repercussions for
plasma stability there.
[56] Finally, another important result of the study is the

finding that plasma �p in the inner magnetosphere at the
peak of storm activity can be significant, i.e., larger than 1.
This shows that plasma pressure is crucial in influencing the
magnetic field configuration and reinforces our previous
conclusion [Zaharia et al., 2005] that a magnetically self-
consistent approach is needed for inner magnetosphere
modeling during storms. In other words, during a geomag-
netic storm the plasma energy density becomes comparable
to or larger than the field energy density, leading to large
changes in the field configuration, whose effects need to be
considered in a self-consistent manner. This work provides
such an approach, and is currently the only one in full three
dimensions with the inclusion of nonisotropic pitch angle
distributions.
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